EEG Abnormalities and Their Radiographic Correlates in a COVID-19 Inpatient Cohort

Author(s):
Sean T. Hwang, M.D.¹; Ahmad A. Ballout, M.D.¹; Anup N. Sonti, B.A.²; Amitha Kapyur, B.A.²; Claudia Kirsch, M.D.³; Neeraj Singh, M.D.¹; Noah Markowitz, B.S.⁴; Tung Ming Leung, Ph.D., M.P.H.⁴; Derek J. Chong, M.D.¹; Richard Temes, M.D.⁵; Steven V. Pacia, M.D.¹; Ruben I. Kuzniecky, M.D.¹; Souhel Najjar, M.D.¹

Neurology® Clinical Practice Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Corresponding Author:
Sean T. Hwang
shwang2@northwell.edu

Affiliation Information for All Authors: 1. Department of Neurology, Zucker School of Medicine, Hempstead, NY; 2. Zucker School of Medicine, Hempstead, NY; 3. Department of Neuroradiology, Zucker School of Medicine, Hempstead, NY; 4. Feinstein Institutes for Medical Research, Manhasset, NY; 5. Department of Neurosurgery, Zucker School of Medicine, Hempstead, NY

Contributions:
Sean T. Hwang: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Ahmad A. Ballout: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Anup N. Sonti: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
Amitha Kapur: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Analysis or interpretation of data
Claudia Kirsch: Drafting/revision of the manuscript for content, including medical writing for content; Major role in the acquisition of data; Study concept or design; Analysis or interpretation of data
Neeraj Singh: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Noah Markowitz: Major role in the acquisition of data; Analysis or interpretation of data
Tung Ming Leung: Analysis or interpretation of data
Derek J. Chong: Study concept or design; Analysis or interpretation of data
Richard Temes: Study concept or design; Analysis or interpretation of data
Steven V. Pacia: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Ruben I. Kuzniecky: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data
Souhel Najjar: Drafting/revision of the manuscript for content, including medical writing for content; Analysis or interpretation of data

Number of characters in title: 72
Abstract Word count: 262
Word count of main text: 3073
References: 27
Figures: 1
Tables: 2

Supplemental: STROBE checklist

Statistical Analysis performed by: Tung Ming Leung, PhD, MPH, Northwell Health.

Acknowledgements: We would like to acknowledge the contributions of the Northwell Health COVID-19 Research Consortium. The initial characteristics of 5700 patients from Northwell are presented elsewhere. This case series provides in-depth electroencephalographic, and radiographic results not presented in that article(27). The authors would also like to thank Drs. Tamara Goodman, Arif Husain, and Vikas Shetty for their assistance in data collection, Martha Karran for her assistance with research coordination and database management, and the EEG technician staff at Northwell Health for their hard work and perseverance during challenging times.

Study Funding: The authors report no targeted funding

Disclosures: S.T. Hwang reports no disclosures relevant to the manuscript; A.A. Ballout reports no disclosures relevant to the manuscript; A.N. Sonti reports no disclosures relevant to the manuscript; A. Kapyur reports no disclosures relevant to the manuscript; C. Kirsch reports no disclosures relevant to the manuscript; N. Singh reports no disclosures relevant to the manuscript; N. Markowitz reports no disclosures relevant to the manuscript; T. Leung reports no disclosures relevant to the manuscript; D.J. Chong reports no disclosures relevant to the manuscript; R. Temes reports no disclosures relevant to the manuscript; S.V. Pacia reports no disclosures relevant to the manuscript; R.I. Kuzniecky reports no disclosures relevant to the manuscript; S. Najjar reports no disclosures relevant to the manuscript

ABSTRACT:

Objective: To identify the prevalence of EEG abnormalities in patients with COVID-19 with neurologic changes, their associated neuroimaging abnormalities and rates of mortality.

Methods: A retrospective case series of 192 adult COVID-19 positive inpatients with EEG performed between March and June 2020 at 4 hospitals: 161 undergoing continuous, 24 routine, and 7 reduced-montage EEG. Study indication, epilepsy history, intubation status, administration of sedatives or antiseizure medications, metabolic abnormalities, neuroimaging pathology associated with epileptiform abnormalities, and in-hospital mortality were analyzed.

Results: EEG indications included encephalopathy (54.7%), seizure (18.2%), coma (17.2%), focal deficit (5.2%), and abnormal movements (4.6%). Epileptiform abnormalities occurred in 39.6% of patients: focal intermittent epileptiform discharges in 25.0%, lateralized periodic discharges in 6.3%, and generalized periodic discharges in 19.3%. Seizures were recorded in 8 patients, 3 with status epilepticus. Antiseizure medication administration, epilepsy history, and older age were associated with epileptiform abnormalities. Only 26.3% of patients with any epileptiform abnormality, 37.5% with electrographic seizures, and 25.7% patients with clinical seizures had known epilepsy. Background findings included generalized slowing (88.5%), focal slowing (15.6%), burst suppression (3.6%), attenuation (3.1%), and normal EEG (3.1%). Neuroimaging pathology was identified in 67.1% of
patients with epileptiform abnormalities, over two-thirds acute. In-hospital mortality was 39.5% for patients with epileptiform abnormalities, 36.2% for those without. Risk factors for mortality were coma and ventilator support at time of EEG.

Significance: This article highlights the range of EEG abnormalities frequently associated with acute neuroimaging abnormalities in COVID-19. Mortality rates were high, particularly for patients in coma requiring mechanical ventilation. These findings may guide the prognosis and management of patients with COVID-19 and neurologic changes.

INTRODUCTION:

Neurologic manifestations of coronavirus disease 2019 (COVID-19), including altered mentation, seizures, cerebrovascular complications, encephalitis, and immune mediated necrotizing encephalopathy are well-documented. An early case series reported serious new-onset neurological events in 3.5% of 917 COVID-19 inpatients and in 9.4% of those critically ill, with acute symptomatic seizures reported infrequently. However, in COVID-19 patients, seizures may reflect serious underlying neuropathology and portend a worse prognosis. Relying solely on observed clinical seizures, particularly when patients remain lethargic, comatose, or delirious for extended periods of time, may result in missed detection of nonconvulsive seizures. Therefore, the true incidence COVID-19 related seizures remains unknown, particularly concerning in critical care settings where patients face an increased risk of COVID-19-related complications including fever, respiratory failure, coagulopathy, multiorgan damage, metabolic derangement, and cytokine storming.

In addition to elucidating EEG data in the COVID-19 population, there is also a greater need to correlate related radiographic data to guide clinical care. A review of 116 COVID-19 patients with neurological symptoms, including seizures and status epilepticus, revealed vascular thrombosis, acute hemorrhagic necrotizing encephalopathy, encephalomyelitis, and bilateral frontotemporal hypoperfusion. This demonstrates the importance of imaging, with more research required to better correlate specific COVID-19 related findings to EEG abnormalities.
The New York City region was an early COVID-19 global epicenter. From March to June 2020, EEG studies were performed on 192 consecutive adult inpatients at four tertiary medical centers in this study. This paper aims to address some of the aforementioned issues by presenting the EEG and neuroradiographic findings along with a review of key clinical features.

METHODS:
A retrospective review was performed of 192 consecutive confirmed adult COVID-19 positive inpatients who underwent EEG for clinical purposes as the main inclusion criteria. All patients included were confirmed SAR-CoV-2 positive by PCR via nasopharyngeal swab and were admitted to one of four tertiary hospitals. EEGs were interpreted by a board-certified epileptologist, with continuous and routine EEG recordings utilizing standard 19-channel recordings and disposable electrode sets (Natus, Pleasanton, CA), and an eight channel disposable headband for reduced montage EEG (RM-EEG) (Ceribell, Mountain View, CA). Indications for EEG were categorized as encephalopathy, coma, focal neurological deficit, abnormal movements (tremors or shivering), or witnessed seizure-like activity based on documentation. EEGs were classified as normal or abnormal, abnormal EEG findings were further subcategorized as epileptiform or non-epileptiform. Criteria for epileptiform activity included focal intermittent epileptiform discharges (IEDs), subclassified for presence of lateralized periodic delta (LPDs); generalized periodic delta (GPDs), subclassified as with or without triphasic morphology; and seizure, subclassified if status epilepticus occurred. Background activity was classified as normal, generalized slowing (mild, moderate, severe), focal slowing with or without lateralized rhythmic delta (LRDA), burst suppression, and diffuse attenuation. For patients with multi-day recordings, the most severe abnormalities during their hospital course were registered in the database. For patients with epileptiform EEG abnormalities, neuroradiographic data on CT or MRI was reviewed by a board-certified neuroradiologist and analyzed and classified as either unremarkable for age, acute, chronic pertinent, or chronic and likely unrelated (such as subcortical white matter disease, lacunar infarcts, or age related volume loss).
Descriptive statistics (median and interquartile range for continuous variables and frequency distribution for categorical variables) were calculated. Age, sex, indications for EEG, the need for mechanical ventilation, use of continuous intravenous (CIV) sedation (benzodiazepine or propofol), antiseizure medication (ASM) administration, presence of clinically significant metabolic abnormalities, and history of epilepsy were screened in univariable analysis as risk factors for epileptiform EEG or in-hospital mortality (defined as occurring within the timeframe of the study). Univariable logistic regression was performed to screen variables with a p-value criterion of p<0.05 for entry into the model selection procedure. Stepwise selection was performed using the variable entry criterion of p<0.05 and variable retention criterion of p<0.05 to enter the final multivariable model. Multivariable logistic regression was performed to determine whether the selected risk factors were associated with the outcome variables.

Data availability

All study data is available from the corresponding author upon reasonable request from any qualified researcher.

Standard Protocol Approvals, Registrations, and Patient Consents

The Northwell Health Institutional Review Board approved this case series as minimal-risk research using data collected for routine clinical practice. Northwell COVID-19 research consortium record number 147. It was determined by the IRB that written informed consent by participants was not needed due to the retrospective nature of this study and lack of identifiable personal health information being used.

RESULTS:

A total of 192 COVID-19 confirmed patients had EEGs performed from March 2020 to June 2020. Average patient age was 67 years (range 23-92), with 38% female. At least one day of continuous EEG
monitoring was performed on 161 patients, with an average of 2.2 days of recording (range 1-12 days). Routine EEG or RM-EEG studies were performed exclusively on 24 and 7 patients, respectively.

Primary EEG indications were determined to be encephalopathy (54.7%), clinical seizure (18.2%), coma (17.2%), focal neurological deficit (5.2%), and abnormal movements (4.7%) (Table 1). Only 9 of 35 (25.7%) of patients with concern for clinical seizures preceding EEG had prior history of epilepsy.

Epileptiform EEG Abnormalities:

Of the 192 patients, 76 (39.6%) had epileptiform discharges or concerning periodic patterns (Figure 1). Prior epilepsy history was documented in only 20 (26.3%) of these cases. Acute or pertinent chronic structural lesions were found in 51 of the 76 patients (67.1%), with 36 (47.4%) being acute in nature.

Electrographic seizures were captured in eight patients, three were found to be in NCSE. Prior epilepsy history was documented in two patients. Imaging abnormalities were noted in all patients, with acute structural lesions in six patients, including ischemic infarcts, leukoencephalopathy, focal leptomeningeal enhancement, hemorrhagic cerebral brain metastasis, and recent craniotomy.

Focal IEDs were the most common epileptiform finding, seen in 48 patients (25.0%), with a previous epilepsy diagnosis reported in a third of cases. In patients without epilepsy, focal IEDs were frontal (22 cases), temporal (13 cases), parietal (two cases), and occipital (one case), overlapping. In patients with epilepsy, focal IEDs were frontal (seven cases), temporal (10 cases), parietal (two cases), and occipital (one case), overlapping. Acute or chronic structural lesions were in 35 of 48 (72.9%) patients, with 23 (47.9%) with acute lesions (Table 2). LPDs were found in 12 patients (6.3%), with a prior history of epilepsy in half of them. A structural lesion was observed in 9 of 12 (81.8%) patients with LPDs, six acute. Acute imaging abnormalities on CT or MRI included: ischemic strokes with multifocal punctate lesions, cortical or brainstem lesions, watershed infarcts or hypoxic-ischemic changes; cerebral or cerebellar hemorrhagic strokes; subdural and subarachnoid hemorrhages; occipital focal
leptomeningeal enhancement, gyral edema, olfactory tract inflammatory changes, T2 and FLAIR hyperintensity in the dorsomedial thalami; leukoencephalopathy; and recent tumor resection.

GPDs were found in 37 patients (19.3%), 13 (6.8%) classified with triphasic morphology (Fig. 1). Prior epilepsy history was noted in five patients. Structural lesions on neuroimaging were found in 21 (56.8%) of these patients, 18 (48.6%) of which were acute (Table 2). Acute structural lesions included: punctate multifocal infarcts, discrete cortical lesions, watershed lesions; hypoxic leukoencephalopathy; cerebellar, brainstem, or cortical hemorrhagic strokes; temporal, callosal, forniceal, mammillary body, or thalamic T2 hyperintensity; leptomeningeal enhancement; and posterior reversible encephalopathy syndrome (PRES).

Univariable analysis showed age, CIV sedative, ASM administration, and epilepsy history were associated with epileptiform abnormalities on EEG. Stepwise model selection retained age, ASMs, and epilepsy history in the final model. The final multivariable logistic regression model showed that age (OR=1.06 95% CI: 1.03-1.09), ASMs (OR=2.48, 95% CI: 1.21-5.07), and epilepsy history (OR=4.59, 95% CI: 1.60-13.21) were the risk factors for epileptiform abnormality on EEG (Table 1). Specifically for age, for every 10 years increase, the odds of having an epileptiform abnormality on EEG was 1.75 times higher than those who were 10 years younger after adjusting for ASMs and epilepsy history (OR=1.75, 95% CI: 1.34-2.28).

[Table 1: Patient Characteristics Correlated with Risk of Epileptiform Discharges or Seizures on EEG and In-Hospital Mortality.]

Background EEG Findings:

Among the cohort, 88.5% of patients demonstrated generalized slowing (13.5% mild, 46.9% moderate, 28.1% severe), 3.1% burst suppression, 2.6% diffuse attenuation, and 3.1% normal recordings. Thirty patients (15.6%) had focal slowing, five characterized as LRDA (Figure 1).
Mortality:

Coma, use of mechanical ventilation, CIV sedative, and metabolic abnormalities were shown to be associated with in-hospital mortality in univariable analysis. Stepwise model selection retained coma and the use of mechanical ventilation in the final model. The final multivariable logistic regression model showed that coma (OR=2.65, 95% CI: 1.14-6.17) and the use of mechanical ventilation (OR=3.42, 95% CI: 1.72-6.81) were the major risk factors for in-hospital mortality (Table 1).

Overall in-hospital mortality rate was 37.5%. Of 76 patients with epileptiform abnormalities, 30 (39.5%) expired, compared to 42 (36.2%) of patients without epileptiform abnormalities. Rates of mortality were highest in patients with GPDs was 43.2%, up to 53.8% in patients with triphasic GPDs, followed by patients with focal IEDs (39.5%), though up to 41.6% in cases with LPDs. Only one of eight patients with electrographic seizures expired (Table 2).

| Table 2: Association of Specific Epileptiform Abnormalities on EEG with History of Epilepsy, Neuroimaging Abnormalities, and In-hospital Mortality. |
DISCUSSION:

This study represents the largest COVID-19 EEG database in the literature, with a high proportion of patients demonstrating epileptiform findings and non-reassuring periodic patterns.15-18 The in-hospital mortality of this cohort of COVID-19 inpatients requiring EEG was relatively high (37.5%), though consistent with the mortality rate of 44\% found in another New York-based hospital system around this time period.19 A considerable number (18.2\%) of patients in our study had documented events of clinical concern for seizure prior to the EEGs being ordered, and a very high proportion of patients presented with encephalopathy or coma. Over a third of patients in our cohort demonstrated overt epileptiform spiking or periodic patterns of concern, though seizures were relatively infrequent, observed in eight patients (4.3\%). For comparison, one prior study noted a smaller percentage with epileptiform abnormalities (27\%), and a higher number of patients with recorded seizures (7\%).19 However, within our cohort, three patients were found to be in NCSE, a particularly serious and treatable condition. Older age, and not surprisingly, ASM administration and epilepsy history were significantly associated with epileptiform abnormalities on EEG. However, only about a quarter of the patients with epileptiform abnormalities or electrographic seizures on EEG had known epilepsy, suggesting the majority of these findings were de novo.

In many reports of COVID-19, electroencephalography (EEG) data is conspicuously lacking. This multifaceted problem may reflect limited availability of EEG and sub-specialists in non-tertiary hospitals, or a purposeful reduction in EEG procedures to decrease exposure risk. The majority of patients in this cohort had at least one CEEG recording, with extensive electrographic data and greater chance of recording pertinent abnormalities. The relatively novel approach of RM-EEG was also utilized, technology potentially suited to the critical care setting for rapid evaluation for seizures. The potential therapeutic implications of EEG studies must be weighed carefully against increased SARS-CoV-2 transmission risk to both patients and healthcare staff. Recent recommendations include utilization of personal protective equipment, disposable electrodes, RM-EEG, and avoiding hyperventilation as an
activating procedure. In our study, precautions included the above protocols, as well as clinical pre-screening, and reduced staffing models. In a prior study of 26 critically ill COVID-19 patients with altered mentation, the majority showed diffuse slowing on 30 minute EEG recordings, however, two patients had isoelectric EEG consistent with brain death, and five cases demonstrated frontal maximal GPDs similar to those in this report. Three of the five cases of GPDs were associated with myoclonus, and three of those patients expired. At least one patient had this pattern in the setting of acute encephalopathy without intubation or sedation, and diffuse white matter hyperintensity on MRI with normal lumbar puncture results.

A study from France of 36 COVID-19 patients, half critically ill, also showed GPDs or multifocal periodic discharges in 32.5% of routine EEGs, three done in patients with unexplained encephalopathy. EEG was normal or only mildly abnormal in about half of the cases.

Galanopoulou et al. studied 22 COVID-19 positive patients with two routine EEGs and 20 RM-EEGs. Sporadic epileptiform discharges were recorded in 40.9%, with frontal maximal sharp waves present in eight of nine patients. Periodic or rhythmic discharges occurred in 18.2% of cases. EEG characterization was limited by predominant use of RM-EEG, utilized to a greater proportion compared to this study.

In an Italian cohort of 15 patients with COVID-19 related encephalopathy, all but two patients with anoxia had either severe attenuation or status epilepticus, all with varying degrees of slowing, though without periodic activity noted. One patient demonstrated frontal intermittent generalized rhythmic delta activity (GRDA). Elevated CSF protein was demonstrated in one patient, and MRI showed T2 hyperintensities in two patients.

Researchers have pondered if GPDs may be an EEG pattern specific to COVID-19 encephalopathy. It is more probable that GPDs reflect severity of illness as opposed to a pathognomonic finding, as GPDs are common, in up to 4% of patients in critical care settings undergoing EEG monitoring.
Associated etiologies typically involving diffuse cortical or thalamocortical dysfunction. GPDs may increase the risk for associated electrographic seizures in at least 16% of patients. Features such as motor manifestations, faster discharge rate, and response to ASMs may be associated with a higher risk of GPDs evolving to seizures or representing NCSE. Follow up EEG monitoring, trials of non-sedating ASMs or short acting benzodiazepines may be warranted to assess clinical response.

The significance of GPDs with triphasic morphology is more controversial, and classically described associated with metabolic encephalopathy. Recent literature supports their occurrence with multiple underlying etiologies, only modest interrater EEG reader agreement in regards to triphasic classification, but increased risk of seizures similar to GPDs without triphasic morphology.

Focal IEDs, LPDs, or LRDA were observed in a quarter of patients in our study indicating an elevated risk of focal onset seizures. A recent Critical Care EEG Monitoring Research Consortium study showed LRDA and LPDs, in particular, associated with seizures in 28% and 44% of EEG studies, respectively. Seizure risk approached nearly two-thirds of patients in highest risk subgroups with a high frequency of discharges and intermixed fast frequency activity or spiking.

In the present study, we correlated epileptiform EEG findings with radiographic abnormalities to understand what proportion of patients with these EEG findings may be secondary to new acute lesions related to COVID-19 or due to exacerbation of pre-existent lesions. As stated, focal IEDs were found in a quarter of patients, LPDs in 6.3%, and focal slowing in 15.6% of cases; hence raising concern for focal cerebral pathology. The presence of focal epileptiform or periodic EEG abnormalities was associated with a high rate of neuroimaging findings (72.9%), with acute lesions identified amongst two-thirds of those. Acute imaging abnormalities included ischemic and hemorrhagic stroke, watershed lesions, hypoxic leukoencephalopathy, subdural and subarachnoid hemorrhages, focal inflammatory changes, leptomeningeal enhancement, and PRES. Likewise, GPDs were found in a relatively high proportion of cases (19.3%), likely reflecting severe patient condition, depth of encephalopathy, and more widespread or global cerebral dysfunction due to metabolic factors, anoxia, infection or
inflammatory factors in critically ill COVID-19 patients. Indeed, in this study patients with coma were 2.6 times more likely to expire during the hospital stay after adjusting for mechanical ventilation use.

The data presented in this study reflects a range of imaging neurologic abnormalities potentially associated with COVID-19. While it is difficult to determine causality in our cohort, some findings may reflect a prothrombotic state due to immune activation, endothelial cell injury secondary to ACE2-mediated viral tropism, hypoxic ischemia, or cytokine storming. These pathophysiologic mechanisms may lead to acute infarcts with heavy clot burdens, intracranial hemorrhages, leukoencephalopathy, global hypoxic injury, cytotoxic lesions of the corpus callosum, olfactory bulb involvement and cranial nerve enhancement.²⁰

In a large retrospective study from China, new onset serious neurological complications were noted in 32 of 917 patients, the majority stroke or altered mentation.⁹ The authors concluded that evidence for CNS involvement due to SARS-CoV-2 was lacking, however, in attempting to reduce virus transmission, no patients were evaluated by MRI or EEG, and head CT was performed in only 9 cases. However, several subsequent case reports demonstrated CNS related complications including acute necrotizing encephalopathy, demyelination, stroke, cortical venous sinus thrombosis, PRES, and seizures indicating serious potential neurological effects of SARS-CoV-2, possibly from direct CNS invasion or secondary effects from autoimmunity or hypercoagulability.⁷,²¹,²²

In a recent review of 61 studies published between 2019 and 2020, radiographic abnormalities were differentiated on mild or severe clinical presentation secondary to COVID-19. Radiographic abnormalities most often included white matter abnormalities, ischemic stroke, intracerebral hemorrhage.²⁰ Less often, abnormalities included leptomeningeal enhancement, venous thrombosis, PRES, olfactory bulb lesions, and encephalitis.²⁰ The diverse neuroradiographic findings and overlap of severity indicates the utility of radiographic imaging for management and treatment COVID-19 patients.

Limitations of the current study include the retrospective nature of the analysis, as causal relationships
between the variables presented cannot be drawn from the data. There was inherent variation in clinical decision-making between providers during COVID-19 redeployment, including when an EEG was ordered, at times in the absence of neurological consultation. The high mortality rate may have reflected triaging of EEG resources and a selection bias towards recording more neurologically-ill patients, where EEGs less
likely to affect clinical decision-making were not performed due to concerns for contagion. Because our data was derived from a large healthcare system with 23 regional hospitals, patients transferred for higher levels of care to the tertiary hospitals may have created a referral bias towards more severe cases. This cohort represents a fraction of the estimated >15,000 COVID-19 patients admitted to the health system during this time, specific to inpatient COVID-19 cases with neurologic complaints, and not necessarily relevant to lesser acute cases. The duration of this study was limited, and thus did not provide long term outlook for persistent electrographic abnormalities or neurological outcome. Additional variables such as the presence of super-infections, cerebrospinal fluid and cytokine laboratory values may be subject to further study.

CONCLUSION:

This study represents the largest series of EEGs in patients with COVID-19 and highlights the importance of fully assessing neurologic complications that may occur, especially in the inpatient or critical care setting. Epileptiform and periodic patterns on EEG were frequently observed, and often associated with presence of acute neuroimaging abnormalities. Mortality rates in this cohort were high, and most elevated in patients with periodic EEG patterns such as GPDs and LPDs, with coma and mechanical ventilation requirements as major risk factors. EEG in COVID-19 patients may play a critical role in detection of seizure-related patterns, identification of patients at greater risk for neuropathology, and prognostication. Patients with focal or potentially epileptiform patterns raise concern for acute brain lesions and may warrant neuroimaging evaluation. Specific patterns may signal need for further interventions such as ASMs, stroke therapies, or immunomodulatory therapy. Severe EEG abnormalities such as diffuse attenuation, burst suppression, and GPDs may be concerning for anoxia and the possibility of poorer prognosis. While the data supports seizures as a rare occurrence, their presence is concerning for neurological complications associated with SARS-CoV-2. The majority of patients with electrographic and observed clinical seizures prior to EEG in this study had no prior known history of epilepsy.
REFERENCES:

Table 1: Patient Characteristics Correlated with Risk of Epileptiform Discharges or Seizures on EEG and In-Hospital Mortality.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (n = 192)</th>
<th>Epileptiform Discharges or Seizures on EEG</th>
<th>In-Hospital Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Univariate</td>
<td>Multivariate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>Median Age (IQR, min, max)</td>
<td>70 (20, 23, 92)</td>
<td>1.04 (1.02-1.06) p<0.001</td>
<td>1.06 (1.03-1.09) p<0.001</td>
</tr>
<tr>
<td>Females (%)</td>
<td>72 (38)</td>
<td>1.15 (0.83-2.09)</td>
<td>0.75 (0.41-1.38)</td>
</tr>
<tr>
<td>EEG Indications:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal Movements (%)</td>
<td>9 (5)</td>
<td>0.42 (0.09-2.08)</td>
<td>1.35 (0.35-5.21)</td>
</tr>
<tr>
<td>Encephalopathy (%)</td>
<td>105 (55)</td>
<td>0.87 (0.49-1.56)</td>
<td>0.68 (0.38-1.22)</td>
</tr>
<tr>
<td>Coma (%)</td>
<td>33 (17)</td>
<td>0.61 (0.27-1.37)</td>
<td>4.36 (1.96-9.68) p=0.003</td>
</tr>
<tr>
<td>Focal Neurological Deficit (%)</td>
<td>10 (5)</td>
<td>1.56 (0.44-5.59)</td>
<td>0.70 (0.18-2.81)</td>
</tr>
<tr>
<td>Seizure (%)</td>
<td>35 (18)</td>
<td>2.08 (0.99-4.37)</td>
<td>0.43 (0.18-1.01)</td>
</tr>
<tr>
<td>Prior Epilepsy (%)</td>
<td>29 (15)</td>
<td>4.25 (1.81-9.94) p<0.001</td>
<td>4.59 (1.60-13.21) p=0.005</td>
</tr>
<tr>
<td>Mechanically Ventilated (%)</td>
<td>106 (55)</td>
<td>0.71 (0.39-1.26)</td>
<td>4.38 (2.28-8.41) p<0.001</td>
</tr>
<tr>
<td>CIV Sedative (%)</td>
<td>61 (32)</td>
<td>0.47 (0.24-0.91) p=0.025</td>
<td>2.78 (1.48-5.21) p=0.001</td>
</tr>
<tr>
<td>Metabolic Abnormality (%)</td>
<td>109 (57)</td>
<td>1.08 (0.60-1.94)</td>
<td>2.13 (1.16-3.92) p=0.015</td>
</tr>
<tr>
<td>Antiseizure Medication (%)</td>
<td>74 (39)</td>
<td>2.95 (1.61-5.40) p<0.001</td>
<td>2.48 (1.21-5.07) p=0.013</td>
</tr>
</tbody>
</table>
Table 2: Association of Specific Epileptiform Abnormalities on EEG with History of Epilepsy, Neuroimaging Abnormalities, and In-hospital Mortality.

<table>
<thead>
<tr>
<th>Epileptiform Abnormalities (n)</th>
<th>Epilepsy History</th>
<th>Acute or Chronic Structural Lesion on Neuroimaging</th>
<th>Acute Structural Lesion on Neuroimaging</th>
<th>In-Hospital Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal IEDs (48)</td>
<td>33.3% (16)</td>
<td>72.9% (35)</td>
<td>47.9% (23)</td>
<td>39.5% (19)</td>
</tr>
<tr>
<td>GPDs (37)</td>
<td>13.5% (5)</td>
<td>56.8% (21)</td>
<td>48.6% (18)</td>
<td>43.2% (16)</td>
</tr>
<tr>
<td>Seizures (8)</td>
<td>37.5% (3)</td>
<td>75.0% (6)</td>
<td>75.0% (6)</td>
<td>12.5% (1)</td>
</tr>
<tr>
<td>Any Epileptiform Abnormality (76)</td>
<td>26.3% (20)</td>
<td>67.1% (51)</td>
<td>47.4% (36)</td>
<td>39.5% (30)</td>
</tr>
</tbody>
</table>

Figure 1. Prevalence of Background and Epileptiform Abnormalities on EEG in COVID-19. Numerical values and (percent) of patients among the cohort. (Due to patients with overlapping EEG findings, percentages do not equal 100%.)