Effects of COVID-19 “Sheltering in Place” on Activity in People with Multiple Sclerosis

Valerie J Block PT DPTSc*, Riley Bove MD MMSc*, Jeffrey M Gelfand MD MAS, Bruce A Cree, MD, PhD, MAS.

¹ Weill Institute for Neurosciences, MS and Neuroinflammation Clinic, University of California San Francisco, Department of Neurology. *These authors contributed equally to the manuscript

Neurology® Clinical Practice Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
Word count paper: 816
Character count Title: 87 (word count:13)
Figures: 1
References: 7

Corresponding Author: Dr. Bruce. A. C. Cree, Email: Bruce.Cree@ucsf.edu

Study Funding:
No targeted funding reported.
Disclosures

VJB report nothing to disclose. VJB is supported by National MS Society Postdoctoral Fellowship FG-1707-28624.

RMB is supported by a National Multiple Sclerosis Society Harry Weaver Scholarship Award. She has received research support from the National Multiple Sclerosis Society, the Hilton Foundation, the California Initiative to Advance Precision Medicine, the Sherak Foundation and Akili Interactive. Dr. Bove has also received personal compensation for consulting from Alexion, Biogen, EMD Serono, Novartis, Sanofi Genzyme, Roche Genentech and Pear Therapeutics.

JMG reports research support to UCSF from Genentech for a clinical trial and consulting for Biogen and Alexion.

BACC reports receiving personal compensation for consulting from: Akili, Alexion, Atara, Biogen, EMD Serono, Novartis Sanofi and TG Therapeutics.

Practical Implications

- Wrist-worn activity monitors can capture in real-time the ecological impact of environmental perturbations on physical activity.

- Biosensing technologies could play a crucial role aiding providers to intervene and prevent clinical decline in neurologically vulnerable populations.

Appendix 2-http://links.lww.com/CPJ/A217
INTRODUCTION

People with neurological conditions that impair mobility such as multiple sclerosis (MS) have low levels of physical activity, with walking their primary form of exercise.1-3 When the San Francisco Bay Area shelter-in-place order was announced in mid-March 2020 to flatten the curve of SARS-CoV-2 infections, the abrupt closure of gyms, fitness studios, and malls greatly limited options for safe exercise. We leveraged an ongoing study utilizing wearable technology, to understand the impact of the shelter-in-place policy on physical activity in people with MS (PwMS) at-risk for neurological worsening.

METHODS

Average daily step count (STEPS) was measured from a previously detailed UCSF MS Center cohort of PwMS using a wrist-worn accelerometer (Fitbit® Flex2).3 STEPS before and after the shelter-in-place were available for 42 participants. Amount, type and frequency of exercise, walking score (a proxy for socioeconomic status [SES] via accessibility of amenities and neighborhood density)4, as well as fatigue (Modified Fatigue Index; MFIS-5) and mental health symptoms (Mental Health Inventory; MHI-5) were assessed via questionnaire.3 The UCSF Institutional Review Board approved the protocol. Descriptive statistics and pre-post comparisons were performed using R studio.

RESULTS

In the 42 adult PwMS the average age was 53.3 (SD 13.0) and the median EDSS was 4.0 [3.5-5.5]. At baseline they reported an average of 3 hours/week of exercise, with “outdoor-walking” as the primary form of activity in 28 (66.7%). Median STEPS were 5,106 [2,928 – 7,572] during February and early March 2020, and dropped to 4,180 [1,720 – 7,411] between March 16th and
April 7th (a decline in STEPS of 800 is generally considered clinically meaningful). STEPS decreased in the week ($p=0.024$), and month ($p=0.048$) after shelter-in-place versus corresponding time-periods before (Wilcoxon signed-rank; Figure 1A and 1B). By 3 weeks after March 16th, 43.2% had not recovered to within 10% of their pre-order activity level. By 3 weeks after March 16th, 43.2% had not recovered to within 10% of their pre-order activity level. However, the apparent rebound in STEPS from the week directly post shelter-in-place compared to the third week post shelter-in-place was not significant across the entire group ($p=0.888$).

People who did not recover activity had lower baseline STEPS [3,404 (IQR: 2,136 – 5,470)] compared to those who rebounded [5,911 (IQR: 2,774 – 8,263)].

Correlations between STEPS change (absolute drop, stable/increase) with age, sex, walking score, MFIS-5, MHI-5, and EDSS were not observed (linear regression). By comparison, for the same epochs in 2019, STEPS remained stable in the week after relative to the week before March 16 (Figure 1A), for the 27 participants with available data. This suggests that seasonal or other patterns were unlikely to influence the 2020 observations.

DISCUSSION

Our continuously obtained, patient-generated data demonstrate a sharp, clinically meaningful decline in physical activity after the SARS-CoV-2 related shelter-in-place, from which almost half of patients had not recovered previous activity levels by one month.

Periods of lower physical activity have the potential to impact PwMS in several ways. First, sedentarism could lead to further muscular and cardiovascular deconditioning. Second, low activity levels can also worsen other MS-related symptoms, including depression, fatigue,
spasticity, contributing to a further cycle of worsening in function. These observations are not unique to PwMS, and many patients with other forms of chronic neurological disability display low levels of physical activity and increased sedentarism.

While many participants were able to return to near-baseline physical activity, almost half did not. Those who did rebound in ambulatory activity levels might have experienced greater resilience in adapting to home exercise programs or walking under new physical distancing rules, or enjoyed greater time for activity due to reductions in time commuting to work. Those who did not rebound also had lower baseline activity and are more vulnerable to disability progression. This highlights the importance of expanding access to telehealth strategies to promote physical activity.

Study limitations include the potential for reactivity, i.e. that knowledge of being monitored increases activity; however, this was not seen in our broader study. Generalizability to the broader MS population may be limited due to the study design that block-recruited by disability, or due to regional weather or activity patterns. The activity changes observed, while perhaps not specific to MS, have important implications for disability progression in PwMS with baseline limited activity. Because the walking score is an indirect measure of SES, additional measures of SES, among other social determinants of health, could enhance understanding of their influence on STEPS.

The shelter-in-place order in response to the SARS-CoV2 pandemic offered a natural experiment, showing that wrist-worn activity monitors capture the real-time, real-world impact
of ecological perturbations. This study also showed differential ability of patients to respond to such challenges; future evaluations would benefit from focusing more granularly on factors promoting resilience. As biosensor technologies become further integrated into clinical care, this technology could play an important role in clinical responses to such changes, targeting telehealth strategies to increase physical activity and prevent functional decline in neurologically vulnerable populations.

FIGURES

Figure 1. Average Daily Step Count (STEPS) Before and After Various Timepoints in 2019 and 2020. A) Decline in STEPS in the week following the Shelter-in-place order (March 16th, 2020) relative to the week prior, and the corresponding periods for 2019. B) STEPS between February 1st and April 7th, 2020. Dashed red line represents shelter-in-place order (March 16th) * = significant difference with the prior timepoint. 2020 boxplots are represented in a darker shade to the 2019 boxplots for contrast.
<table>
<thead>
<tr>
<th>Author Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valerie J Block, PT DPTSc</td>
<td>Department of Neurology, University of California San Francisco,</td>
<td>Design and conceptualized study; analyzed the data; drafted the manuscript for intellectual content</td>
</tr>
<tr>
<td>Riley Bove, MD MMSc</td>
<td>Department of Neurology, University of California San Francisco,</td>
<td>Design and conceptualized study; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Jeffrey M Gelfand, MD MAS</td>
<td>Department of Neurology, University of California San Francisco,</td>
<td>Design and conceptualized study; interpreted the data; revised the manuscript for intellectual content</td>
</tr>
<tr>
<td>Bruce A C Cree, MD, PhD, MAS</td>
<td>Department of Neurology, University of California San Francisco,</td>
<td>Design and conceptualized study; interpreted the data; revised the manuscript for intellectual content</td>
</tr>
</tbody>
</table>
REFERENCES

Effects of COVID-19 "Sheltering in Place" on Activity in People with Multiple Sclerosis

Valerie J Block, Riley Bove, Jeffrey M Gelfand, et al.

Neurol Clin Pract published online September 28, 2020

DOI 10.1212/CPJ.0000000000000982

This information is current as of September 28, 2020

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cp.neurology.org/content/early/2020/09/28/CPJ.0000000000000982.full.html</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Rehabilitation http://cp.neurology.org/cgi/collection/all_rehabilitation</td>
</tr>
<tr>
<td></td>
<td>COVID-19 http://cp.neurology.org/cgi/collection/covid_19</td>
</tr>
<tr>
<td></td>
<td>Multiple sclerosis http://cp.neurology.org/cgi/collection/multiple_sclerosis</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://cp.neurology.org/misc/about.xhtml#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://cp.neurology.org/misc/addir.xhtml#reprintsus</td>
</tr>
</tbody>
</table>

Neurol Clin Pract is an official journal of the American Academy of Neurology. Published continuously since 2011, it is now a bimonthly with 6 issues per year. Copyright © 2020 American Academy of Neurology. All rights reserved. Print ISSN: 2163-0402. Online ISSN: 2163-0933.