Neurology and the COVID-19 Pandemic: Gathering Data for an Informed Response

Brigit High*, BA, Alison M. Hixon*, PhD, Kenneth L. Tylerb, MD, Amanda L. Piquetb, MD, Victoria S. Pelakbc, MD

*Medical Scientist Training Program, University of Colorado School of Medicine, 13001 E. 17th Place
Mail Stop C296, Q20-W5119, Aurora, CO, 80045

bDepartment of Neurology, University of Colorado School of Medicine, 12700 East 19th Ave., Research Complex 2, Mail Stop B182, Aurora, CO, 80045

cDepartment of Ophthalmology, Colorado University School of Medicine, 1675 North Aurora Court F731, Aurora, CO, USA

Neurology® Clinical Practice Published Ahead of Print articles have been peer reviewed and accepted for publication. This manuscript will be published in its final form after copyediting, page composition, and review of proofs. Errors that could affect the content may be corrected during these processes.
These authors contributed equally to the manuscript.

Corresponding Author: Dr. Victoria S. Pelak, Email: victoria.pelak@cuanschutz.edu

Title character count: 76
Abstract word count: 155
Manuscript word count: 4198
References: 104
Search Terms: Viral infections [142], All Clinical Neurology [14], All Epidemiology [52], All Immunology [131]

Study Funding: A.M.H. is support by a fellowship from the NIAID (F30 AI136403-01A1). K.L.T. is supported by funding from the NIH (R01 NS101208) and is the recipient of a VA Merit Award.

Abstract

Purpose of review: The current coronavirus disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the greatest medical crises faced by our current generation of healthcare providers. While much remains to be learned about the pathophysiology of SARS-CoV-2, there is both historical precedent from other coronaviruses and a growing number of case reports and series that point to neurological consequences of COVID-19.

Recent findings: Olfactory/taste disturbances and increased risk of strokes and encephalopathies have emerged as potential consequences of COVID-19 infection. Evidence regarding whether these sequelae result indirectly from systemic infection or directly from neuroinvasion by SARS-CoV-2 is emerging.

Summary: This review summarizes the current understanding of SARS-CoV-2 placed in context with our knowledge of other human coronaviruses. Evidence and data regarding neurological sequelae of COVID-19 and the neuroinvasive potential of human coronaviruses are provided along with a summary of patient registries of interest to the Neurology community.

Summary Box:
1. Human coronaviruses have been shown to be neuropathogenic.
2. Potential mechanisms of neuropathogenesis of SARS-CoV-2 include hematogenous and transsynaptic spread based on viral receptor expression.
3. Neurological sequelae of COVID-19 involve indirect, direct, and post-infectious disease mechanisms with consequences that include stroke, encephalitis/encephalopathy, and Guillain-Barre Syndrome.
4. Patient registries will be useful to identify and track neurological sequelae of COVID-19.
SARS-CoV-2 infection and will improve our understanding of the impact of COVID-19 on the nervous system.

Coronavirus Taxonomy and History

Coronaviruses (CoVs) are ubiquitous pathogens and have been isolated from many animal species ranging from turkeys to bats to beluga whales. CoVs belong within the taxonomic family *Coronaviridae*, which is further divided into four genera – alpha (α)-, beta (β)-, gamma (γ)-, and delta (δ)-CoVs. There are seven known species of human coronaviruses (HCoVs), and all are in the α- and β-CoV genera. HCoVs consist of two α-CoVs, HCoV-NL63 and HCoV-229E, and five β-CoVs, HCoV-OC43, HCoV-HKU1, SARS (Severe Acute Respiratory Syndrome)-CoV-1, MERS (Middle-East Respiratory Syndrome)-CoV, and now the recently identified SARS-CoV-2, which is responsible for the coronavirus disease 2019 (COVID-19) pandemic.

Of the seven HCoVs, the -NL63, -229E, -OC43, and -HKU1 species are endemic worldwide and are primarily associated with mild upper respiratory disease (“the common cold”). In the past thirty years, the three other HCoV species have now emerged to infect humans and are most well-known for causing severe respiratory disease: SARS-CoV-1, MERS-CoV, and SARS-CoV-2. The modern outbreaks of these HCoVs are thought to represent bat-to-human zoonotic transmissions with the involvement of an intermediate host. While the SARS-CoV-2 outbreak was first associated with workers at a live-animal market in Wuhan, China, the exact origin and evolution of this virus remains to be fully delineated.

Basic Virology

CoV virions are ~125 microns in diameter and are composed of a host-derived lipid envelope surrounding a helical nucleocapsid with a single strand of positive-sense RNA (+ssRNA) as the viral genome. CoV genome sizes range from 26-32 kilobases (kb).
and are the largest known +ssRNA viral genome9. These genomes encode viral proteins that assist in different steps of the viral life cycle and thus, are potential vaccine targets. CoVs are named for their distinctive crown-like appearance under electron microscopy resulting from a radiating array of spike (S) proteins projecting from the viral envelope1-7. The S protein is critical for CoV binding to cell receptors. In addition, the viral genome encodes other structural proteins including the membrane (M) protein, which helps to shape the viral envelope and disrupt host interferons, and envelope (E) protein, which participates in various stages of the viral life cycle and contributes to host cell death (Fig. 1)1,9,10. The nucleocapsid (N) protein, which surrounds the RNA genome, acts as an RNA chaperone (Fig. 1)1,7,9.

The significance of the genomic differences between SARS-CoV-2 and the other modern HCoVs and the implications for disease phenotype and tropism remains to be fully characterized. Following identification of the first case cluster in Wuhan, China in late December of 2019, the pathogen was isolated by January 7, 2020 and the whole genome sequence was shared with the World Health Organization (WHO) only 5 days later on January 12, 202011. The available sequencing data indicates that the genome size is 29.8 kb with 14 open reading frames encoding 27 proteins8. SARS-CoV-2 appears more closely related to SARS-CoV-1 (~79% homology) and more distantly related to MERS-CoV (~50% homology)6,8,12. Like SARS-CoV-1, SARS-CoV-2 utilizes the ACE-2 receptor, appears to have a 4- to 20-fold higher ACE-2 binding affinity than SARS-CoV-113,14,15. SARS-CoV-2 also appears to have the ability to use a host protease, furin, to cleave the viral S protein. This furin cleavage site is not found in SARS-CoV-1, and its exact function in the SARS-CoV-2 life cycle has yet to be determined15. Acquisition of mutations allowing for furin cleavage has been seen in other viruses, such as influenza and MERS-CoV, and has been implicated in causing increased virulence and promoting cross-species transmission16,17. It may function in enhancing viral fusion following receptor binding or assist in viral exit from an infected cell.
Clinical Spectrum and Transmission of COVID-19

As of May 30, 2020, there have been over 5.9 million confirmed cases of COVID-19 worldwide with over 365,000 deaths. The global case fatality rate is estimated to range from 2% to 5%, although testing variability between countries – including a lack of testing for mild and asymptomatic cases – likely overestimates this range. In most instances, COVID-19 is less lethal than the disease caused by SARS-CoV-1, which had a case fatality rate of 11%. However, the higher rate of human-to-human transmission of SARS-CoV-2 has created a global pandemic with dire implications for healthcare capacity. SARS-CoV-2 is thought to be transmitted primarily through respiratory droplets when an infected person coughs or sneezes. The virus can remain viable on various surfaces thus allowing potential fomite transmission. Finally, asymptomatic carriers, who tend to be younger and healthier than those with moderate or severe courses of disease, are increasingly being recognized as drivers of disease propagation. However, the exact prevalence of this group is unclear due to gaps in testing.

The incubation time to symptom onset following exposure can range from 2-14 days (mean: 5 days). Typical COVID-19 presenting symptoms include fever, cough, and shortness of breath. CT chest abnormalities are observed in nearly all hospitalized COVID-19 patients and consist of ground-glass opacities with bilateral multiple lobular and subsegmental areas of consolidation. Most symptomatic individuals have a mild course that resolves without the need for hospitalization, but infection can rapidly progress to severe disease with multi-organ failure (MOF) and death. Severe complications of COVID-19 include Acute Respiratory Distress Syndrome (ARDS), acute kidney injury, acute cardiac disease, disseminated intravascular coagulopathy, and laboratory findings can include leukopenia, lymphopenia or lymphocytosis, abnormal liver enzymes, elevated d-dimer, and elevated inflammatory markers (e.g. IL-6, ferritin, C-Reactive Protein).
The risk of developing severe COVID-19 increases progressively with age. Individuals >65 years in age are more likely to experience hospitalization, intensive care unit admission, mechanical ventilation, and death compared to younger people25, 28, 29. These epidemiologic patterns of COVID-19 are similar to those seen with SARS-CoV-1 and MERS-CoV30, 31. Although children tend to experience milder symptoms and a better prognosis compared to adults, there have been emerging reports from Europe and North America of multisystem inflammatory conditions like that of Kawasaki disease and hyperinflammatory shock syndrome in children and adolescents32, 33. The association between SARS-CoV-2 and severe pediatric disease is likely a reflection the size of the global outbreak in diverse populations rather than increased virulence of the SARS-CoV-2 compared to other modern HCoVs.

For the three modern HCoVs – SARS-CoV-1, MERS, and SARS-CoV-2 – a key feature of severe disease is a dysregulated immune response that damages the lungs and organs above and beyond the direct viral damage10, 34. The exact mechanisms driving this hyperinflammatory immunopathology are not well understood and may be multifactorial10. Overall, individuals with severe disease appear to have rapid viral replication in the lungs with increases in alveolar macrophages and pro-inflammatory cytokines, including TNF-\(\alpha\), IL-1, IL-6, and ferritin34. Seemingly paradoxically, as many as 80% of COVID-19 patients develop lymphopenia35. The exact cause of lymphopenia is unknown but could be due to tissue redistribution to areas of infection (lungs), direct viral infection of lymphocytes followed by cell death, or cytokine-induced lymphotoxicity10, 34, 36. Together, these factors promote massive inflammation and cytokine storm.

Health related comorbidities also contribute to the development of severe disease, with 94% of deaths occurring in patients with at least one comorbidity37. Conditions increasing risk of severe disease include diabetes, hypertension, Class III obesity (Body Mass Index >40), severe or chronic cardiac disease, chronic lung disease including moderate to severe asthma, and being male37. Members of racial minorities in the United States are at higher risk of poor
outcomes that are most likely due to inequalities in medical care and the higher prevalence of comorbidities in this population driven by health disparities. The relationship between these comorbidities and development of cytokine storm could be driven by changes in receptor expression and dysregulation of innate immunity and inflammation that can occur in these disease states, among other hypotheses.

Neurologic Sequelae of SARS-CoV-2 and COVID-19

Although COVID-19 is primarily a disease of the respiratory tract, neurological symptoms are increasingly being recognized. With a rapid rise in severely ill patients, nervous system manifestations can be overlooked, masked by sedation during ventilation, or be of lower priority when severe respiratory and cardiac compromise occur. The neurological sequelae that have been described to date are discussed with attention to available evidence for indirect, direct, or post-infectious mechanisms.

Olfactory and Taste Disturbances

The CDC recently expanded the COVID-19 symptoms list from the typical fever, cough, and shortness of breath triad to include sudden onset of taste and/or smell loss. Table 1 summarizes studies focusing on taste/smell dysfunction with COVID-19. The prevalence of these symptoms among COVID-19 patients is estimated around 52.73% (95% CI, 29.64%-75.23%) for olfactory dysfunction and 43.93% (95% CI, 20.46%-68.95%) for gustatory dysfunction in a meta-analysis of published reports before April 19, 2020. The timing of onset of the olfactory/taste disorders presents particular interest because they may occur earlier than other hallmark features of COVID-19 (fever or cough), which opens the possibility of using them as initial screening measures. In a cohort of hospitalized patients in Milan, Italy, 20% experienced smell and taste disturbance before admission, while the remainder reported these disturbances during their hospital stay. Taste alterations were noted to be more prevalent prior
to hospitalization (91%), whereas taste and smell changes were equally prevalent during hospitalization39. In other another report, symptoms of loss of taste, smell, or both have been noted to persist for up to several weeks41. While olfactory disturbances are common in other upper respiratory illnesses of viral origin due to sinonasal symptoms (rhinorrhea, congestion), these are less commonly observed in COVID-19 patients51. The lack of sinonasal symptoms suggests viral mediated dysfunction of gustatory and olfactory organs rather than inflammatory damage; however, the exact mechanisms remain to be determined.

\textit{Cerebrovascular Disease}

A small but growing number of reports suggest an increased risk of stroke as a potential complication of COVID-19 infection (Table 2) 42, 53-56. Predisposition to stroke may be related to a infection-induced coagulopathy as indicated by elevated D-dimer, elevated fibrinogen, and thrombocytopenia common in patients with severe COVID-19 disease54. Large vessel strokes have also been reported in relatively healthy individuals 30-50 years old with only minor COVID-19 symptoms55. As discussed in the next sections, infection of endothelial vasculature by SARS-CoV-2 could lead to endothelial dysfunction, and this dysfunction combined with hypercoagulability could predispose to either thrombotic or hemorrhagic stroke. Another possible mechanism explaining stroke associated COVID-19 could be the development of prothrombotic immunoglobulins, such as antiphospholipid antibodies and lupus anticoagulant that have now been reported in some COVID-19 patients, both with and without signs of stroke (Table 2)54, 57, 58. Pro-coagulant antibodies, however, may be transiently expressed in many disease states and more work is needed to understand their prevalence and significance in COVID-19-associated stroke.
Encephalitis and Encephalopathy

There have been two cases of viral encephalitis or meningitis/encephalitis with SARS-CoV-2 RNA found in the cerebrospinal fluid (CSF) (Table 2). Detection of SARS-CoV-2 in the CSF, the gold standard for causal diagnosis of CNS infection, suggests a neuroinvasive potential for this virus. Encephalopathy may be an indirect (i.e. non-CNS invasion) presenting feature of severe COVID-19, particularly in the elderly, and COVID-19 should be included in the differential for those presenting with signs of illness and altered mental status (AMS). Acute necrotizing encephalopathy (ANE), which is likely an inflammatory disorder related to a viral-induced cytokine storm, was described in an airline worker in her late fifties with SARS-CoV-2 infection who experienced AMS that rapidly progressed to coma (Table 2). This case highlights the potential for more than one viral-induced indirect (i.e. non-invasive) mechanism to cause encephalopathy.

Seizure

A retrospective study of 304 patients with no history of epilepsy or seizure showed no increase in risk for developing new onset seizures following COVID-19 infection. However, viral illnesses can lower seizure thresholds in those with epilepsy due to alterations in medication metabolism during illness, as illustrated by a case report of a patient with COVID-19 and a history of well-controlled seizures due to remote history of herpes encephalitis who presented with focal status epilepticus despite an absence of respiratory symptoms (Table 2). This case highlights the need to monitor for changes in those with epilepsy and SARS-CoV-2 exposure.

Guillain-Barre Syndrome (GBS)

Several single case reports detail the emergence of GBS as a post-infectious complication SARS-COV-2 (Table 2). In addition, five patients in Northern Italy were
reported to develop flaccid limb weakness and tingling consistent with GBS following SARS-CoV-2 infection\(^4\). Outcomes for the Italian patients were poor, with two patients requiring continued ventilation and four with significant weakness at four weeks follow-up despite treatment with IVIG\(^4\). With time, the full extent and prognosis of GBS associated with COVID-19 will be better understood.

Impact on Pre-Existing Inflammatory Disorders of the Nervous System

The CDC reports that immunocompromised individuals are at higher risk for severe illness from SARS-CoV-2 infection, but a specific evidence of such and outcomes are lacking\(^3\). Before advising patients to alter ongoing therapies that target the immune system, the risk of neurological disease progression must be weighed against the current unknowns related to COVID-19. There exists a balance between suppressing the inflammatory response and creating an environment that promotes viral proliferation. Broadly-acting agents glucocorticoids, which suppress both innate and adaptive arms of the immune system, have been used during the severe respiratory phase of COVID-19, although recommendations against glucocorticoids in COVID-19 exist\(^6\). Other agents, such as alemtuzumab (targets CD52 present on T and B lymphocytes) and cladribine (depletes B and T lymphocytes), can cause profound lymphopenia and may exacerbate the lymphopenia and immune dysregulation already seen in severe COVID-19. More narrow targeting of pro-inflammatory cytokines may actually be beneficial in COVID-19, including drugs such as baricitinib (inhibits JAK inflammatory pathway), tocilizumab (anti-IL-6 receptor), and siltuximab (anti-IL-6). Use of these drugs in COVID-19 have some shown some promise in small trials, but data from randomized control trials are pending\(^6\). Many of the commonly used immunomodulatory or immunosuppressive agents for inflammatory or immune-related neurological disorders, such as rituximab, ocrelizumab, fingolimod, natalizumab, azathioprine and others, have unknown impact on risk of infection and there are concerns for increased complications related SARS-CoV-2, but there are many unknowns. The
decision to continue on disease modifying agents with careful monitoring for COVID-19 symptoms in order to prevent exacerbation of devastating neurologic disorders should be made on a case-by-case basis until further data are available67.

Neurological Sequelae of Other HCoVs

It is noteworthy that neuroinvasion has been demonstrated in almost all the other β-CoVs3, 68-80. Table 3 details all studies described in this section. A series of postmortem studies on individuals who died as a result of SARS-CoV-1 in 2003, some with neurological symptoms prior to death, revealed that SARS-CoV-1 can become widely disseminated during infection and can be found within the CNS70, 72, 74, 79, 80. SARS-CoV-1 virus was identified by several different methods, including by RT-PCR in CSF and brain tissue, and by immunohistochemistry in cortical and hypothalamic neurons71, 72, 74, 79. Rare cases studies have also implicated HCoV-OC43 and -229E as causes of encephalomyelitis, encephalitis, and acute flaccid paralysis, in children75, 77, 78. Histopathology is not available for any cases of MERS-CoV. Neurologic symptoms of headache and confusion were reported in 10-25% of MERS-CoV patients during acute infection76. There are two reports of MERS-CoV-associated hemorrhagic stroke68, 69. MERS-CoV has been more commonly associated with post-infectious complications such as GBS68, 69, 73, 76. One case series documented diffuse subcortical gray and white matter damage in three patients following severe MERS-CoV infection, possibly due to hypoxic-ischemic injury, although one patient may have had acute disseminated encephalomyelitis (ADEM), a demyelinating disease that attacks white matter in the brain and spinal cord69. There have also been five cases of patients who developed GBS-like flaccid paralysis and paresthesia following MERS-CoV infection68, 73.
Possible Mechanisms of HCoV Neuroinvasion

Given our knowledge of other HCoVs, we describe two potential methods by which SARS-CoV-2 could invade the nervous system: hematogenous and trans-synaptic spread (Fig. 2B-D).

Potential for hematogenous spread to the CNS.

For many viruses, initial infection of the lungs has been demonstrated to lead to access to the circulatory system with the presence of virus in the blood (e.g., viremia). ACE-2 is expressed on vascular endothelium of arteries and veins in humans and could serve as a gateway to multi-organ HCoV disease. In addition, infected immune cells could carry HCoV to multiple sites throughout the body with precedent demonstrated by SARS-CoV-1 infection of monocytes and lymphocytes in a study examining 22 blood samples from patients infected with SARS-CoV-1 showed the presence of viral particles in both the monocytes and lymphocytes detected in six patients. Monocytes and lymphocytes could, therefore, act as “Trojan Horses” for viral CNS access, as has been shown in coxsackie B3 virus and cytomegalovirus infections. Taken together, it is possible that viremia and hematogenous trafficking via infected white blood cells may allow for SARS-CoV-2 access to the CNS via CNS capillaries, which are particularly extensive and highly permeable within circumventricular organs (CVOs) that localize to periventricular regions of the brain and lack a blood-brain barrier (BBB) (Fig. 2B and C). ACE-2 expression in several CVOs are responsible for detecting compositional changes in the peripheral circulation and transmitting this information to autonomic control centers in the hypothalamus and brainstem. A study investigating ACE-2 expression in wild type mice found that ACE-2 is expressed in the subfornical organs, the vascular organ of the lamina terminalis (OVLT), the median eminence, and the area postrema (Fig. 2C). The latter has projections to other ACE-2-expressing regions of the brainstem, notably the dorsal motor nucleus of the vagus nerve (CN X) and the nucleus of the solitary tract, which is involved in taste processing.
Furthermore, ACE-2 is highly expressed in the choroid plexus of humans. Inflammation produced by pathological conditions, such as hypoxic-ischemic injury that occurs with severe COVID-19, can lead to the release of proinflammatory cytokines by microglia and brain endothelial cells which, along with oxidative stress and increased nitric oxide production, degrading the BBB\(^\text{86}\) and increasing susceptibility for viral entry via hematogenous spread. In this pathological state, virus and leukocytes could enter the CSF via the choroid plexus and lead to infiltration of brain tissue\(^\text{86}\) (Fig. 2C).

Consideration of trans-synaptic spread to the CNS

Another potential route to the CNS is trans-synaptic spread through tissues innervated by nerves for taste and smell (Fig. 2D), particularly in light of the numerous case reports and emerging studies describing disturbances in taste and/or smell without rhinorrhea in patients with confirmed COVID-19 (see Table 2 for details)\(^\text{39-41, 44, 45}\). When considering trans-synaptic spread via gustatory system components, it is important to note that ACE-2 is crucial to sodium homeostasis, which influences salt appetite and perception of salty taste. ACE-2 is highly expressed in the lingual taste buds and in the tongue epithelium of mice, along with other renin angiotensin aldosterone system components that are innervated by gustatory afferents\(^\text{87}\), although the expression of ACE-2 in human gustatory afferents has not been characterized. Recent work describes significant expression of ACE-2 in human oral tissues in the epithelial cells, including the tongue and palate, where taste buds – which are comprised of specialized epithelial cells innervated by gustatory afferents – reside. ACE-2 receptors are also widely expressed in the human CNS, and particularly widely throughout the brainstem. Renin-angiotensin system components (ACE, AngII) have also been detected specifically throughout the human nucleus of the solitary tract – where gustatory afferents terminate – as well as in the dorsal motor nucleus of the vagus nerve, and both the rostral and caudal ventrolateral reticular nucleus of the human brainstem\(^\text{88}\). In addition to receiving gustatory information, the nucleus of
the solitary tract receives general visceral afferents from the cardiovascular, pulmonary, and gastrointestinal systems. If SARS-CoV-2 were capable of invasion via chemosensory and/or chemoreceptive neurons, this could account for the variety of symptoms observed in COVID-19 patients, including taste disturbances, hypoxia, cardiac complications, and even gastrointestinal complaints.

A significant effort is being made to understand the role of the olfactory system in COVID-19 symptomatology. Although ACE-2 is known to be expressed in the olfactory system and in the olfactory bulbs of mice87, the anosmia of COVID-19 is more likely mediated through non-neuronal cell types of the olfactory epithelium. Human olfactory sensory neurons have little expression or co-expression of ACE-2, while non-neuronal cell types of the olfactory epithelium had high levels of expression and co-expression of these SARS-CoV-2 entry genes88-91. These findings suggest that disruption or loss of smell are more likely a result of damage to or dysfunction of non-neuronal cell types rather than infection of neuronal cells (Fig. 2D).

Additional gaps remain in our understanding of CNS invasion. First, while it is certainly plausible that ACE-2 – the known SARS-CoV-2 receptor – plays a role in CNS infection, other receptors that remain to be discovered might better explain COVID-19 CNS manifestations. Second, other host factors may be necessary to explain pathogenesis in specific tissues. This is most evident in tissues that have high expression of ACE-2 receptors, yet appear to not be significantly impacted by infection. For example, ACE-2 is strongly expressed in the digestive system according to the Human Protein Atlas92, and yet, gastrointestinal symptoms are reported in a minority of COVID-19 patients25.

Long-term Neurologic Sequelae of CoV infection

An important consideration for HCoVs is the evidence for potential long-term persistence in CNS tissue. Infection of immortalized neuronal and oligodendrocyte cells lines with HCoV-OC43 and -229E, respectively, revealed viral antigen and infectious particles in a small
proportion of the cell populations through dozens of cell passages93, 94. T-lymphocytes from multiple sclerosis patients contain antigens that cross-react with antigens of HCoV-229E, previously suggesting a link between HCoV infection and CNS immune-related disease95, and mice infected intracerebrally with HCoV-OC43 developed long-term behavioral deficits with chronic loss of hippocampal neurons and viral RNA detected by RT-PCR for up to 1-year postinfection96.

There has been significant interest in the link between chronic neurological disease and infectious events, and some viral infections are known to cause persistent neurologic disease. For example, measles persistence in the CNS can cause subacute sclerosing panencephalitis to begin 1 month to 27 years after initial infection97. There is also growing evidence that viral infections could be among the many environmental factors predisposing individuals to development of neurodegenerative diseases. West Nile Virus (WNV) infection in the CNS results in up-regulation of alpha-synuclein, which appears to have an innate immune function, suggesting a mechanistic link between viral infection and the development of Parkinson’s disease98. Varicella Zoster Virus (VZV), which infects >90% of the world population, can reactivate in sensory ganglia to cause shingles, and other sequelae cerebrovascular infection and stroke99. VZV can increase the production of amylin and amyloid beta and has a theoretical potential to be associated with risk of AD99.

Monitoring the long-term association of viruses with neurologic disease has a historic precedent. Between 1916 and 1927 the world was swept with a phenomenon known as encephalitis lethargica (EL)100, 101. This syndrome resulted in symptoms of extreme fatigue, abnormal eye movements, and Parkinsonian-like motor symptoms. Estimates suggest that EL afflicted over one million people to cause up to 500,000 deaths100, 101. The most likely culprit for this widespread phenomenon has been thought to be a viral infection, such as the 1918 H1N1 influenza, but historical epidemiological and histological examination have been inconclusive100.
Neurologists should be prepared to monitor for changes and future neurologic sequelae related to the COVID-19 pandemic.

Clinical Recommendations and Resources

To effectively understand the neurologic consequences of COVID-19 and the potential for neurological disorders and their therapies to be risk factors for COVID-19 complications, standardized and large-scale collaborative data collection is necessary. Multiple medical specialty groups, such as the American Society of Clinical Oncology and the Global Rheumatology Alliance, have developed registries for their respective patient populations. Recently, the Consortium of Multiple Sclerosis Centers and the National Multiple Sclerosis Society created COViMS to capture data on clinical outcomes related COVID-19 in patients with prior diagnosis of MS and related disorders and to learn about relative risks associated with disease-modifying treatments in the setting of COVID-19. As the list of registries continue to grow (**Table 4**), we must keep in mind that the true prevalence of disease will remain uncertain without large-scale testing in asymptomatic people and serology for antibodies to SARS-CoV-2. Reports of increased incidence of death at home in major cities points to the lack of accurate data and future registry data will be a biased sample without more widespread testing.

Conclusions

In summary, HCoVs have the capacity to be neuropathogenic. There is increasing evidence that SARS-CoV-2 can cause both direct and indirect neurological disease, but much remains to be learned. For now, caution must be taken in regard to attributing neurologic disease to direct neuronal infection by SARs-CoV-2 until protocols can be developed that allow for post-mortem tissue investigations and, in absence of that, it is prudent to view neurologic outcomes, signs, and symptoms associated with COVID-19 through the lens of prior discoveries related to other HCoVs. The impact of COVID-19 upon pre-existing neurologic disorders, and
the impact of immunosuppressive and immunomodulatory therapies used to treat immune-related neurologic disease on COVID-19, is currently unknown. Patient registries will provide could provide a picture on risk-stratification for these groups combined with testing for acute infection and exposure.

Acknowledgments

We would like to thank Dr. Tom Finger for his guidance and thoughts on this manuscript, especially on the topics of taste and smell.

Appendix 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brigit High, BA</td>
<td>University of Colorado,</td>
<td>Wrote the manuscript, made the tables</td>
</tr>
<tr>
<td></td>
<td>Aurora, CO</td>
<td></td>
</tr>
<tr>
<td>Alison M. Hixon, PhD</td>
<td>University of Colorado,</td>
<td>Wrote the manuscript, made the tables, made the figures</td>
</tr>
<tr>
<td></td>
<td>Aurora, CO</td>
<td></td>
</tr>
<tr>
<td>Kenneth L. Tyler, MD</td>
<td>University of Colorado,</td>
<td>Edited the manuscript</td>
</tr>
<tr>
<td></td>
<td>Aurora, CO</td>
<td></td>
</tr>
<tr>
<td>Amanda L. Piquet, MD</td>
<td>University of Colorado,</td>
<td>Wrote the manuscript, made the tables</td>
</tr>
<tr>
<td></td>
<td>Aurora, CO</td>
<td></td>
</tr>
<tr>
<td>Victoria S. Pelak, MD</td>
<td>University of Colorado,</td>
<td>Wrote the manuscript, made the tables</td>
</tr>
<tr>
<td></td>
<td>Aurora, CO</td>
<td></td>
</tr>
</tbody>
</table>
References

37. CDC. Coronavirus Disease 2019 (COVID-19) [online].

Figure Legends
Figure 1. Schematic of a SARS-CoV-2 virion. The image depicts the SARS-CoV-2 virion with lipid bilayer membrane and shows the structural spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins. The virion contains a single strand, positive sense ribonucleic acid (+ssRNA) genome surrounded by its N protein chaperone. The S, M, E, and N proteins are possible targets for vaccine development.

![Schematic of a SARS-CoV-2 virion](image)

Fig 2. Proposed pathways SARS-CoV-2 systemic infection and neuroinvasion. (A) This panel depicts the initial infection by SARS-CoV-2 with viral entry into the nasopharynx, oropharynx, larynx, and lungs. (B) This panel depicts a magnified cross-section of a lung alveolus and capillary. SARS-CoV-2 is known to infect type II pneumocytes as well as endothelial cells, which express the ACE-2. From the lungs, the virus could enter the vasculature and circulate to other organs, resulting in multi-organ infection and sepsis.
Inflammation of cells such as neutrophils, monocytes, and lymphocytes could contribute to viral access to the vasculature due capillary leakage and direct tissue damage. This may also be an initial site for viral infection of immune cells such as macrophages and lymphocytes, which have been shown to become infected by other coronaviruses, such as SARS-CoV-1, and express the ACE-2 receptor. (C) This panel depicts a sagittal cross-section of the brain at the level of the third and fourth ventricles with surrounding structures. Hematogenous spread could lead to direct viral infection of the CNS or infection of the CNS via the circumventricular organs (CVOs) including the subfornical organs, the vascular organ of the lamina terminalis (OVLT), the median eminence, and the area postrema, which do lack a blood brain barrier and have been shown to express ACE-2. SARS-CoV-2 may also access the CNS via the choroid plexus, depicted on the roof of the third ventricle and in the fourth ventricle. Virus could infect the vasculature of these regions, which expresses ACE-2 or traffic into the CNS via infected lymphocytes. (D) This panel depicts a sagittal cross section of the upper respiratory tract. SARS-CoV-2 infection has been associated with hyposmia and hypogeusia in a significant number of patients. ACE-2 has been found in the non-neuronal cells of the olfactory system, suggesting dysfunction damage to non-neuronal cells as a cause of anosmia. Hypogeusia could be caused by viral infection of gustatory neurons of cranial nerves VII (chorda tympani of the facial nerve), CN IX, and CN X, all of which project to the nucleus of the solitary tract in the brainstem and are known to express ACE-2. Gustatory pathways could contribute to viral CNS access to the brainstem that ultimately contributes to respiratory dysfunction. Infection of the brainstem could worsen respiratory distress in severe COVID-19 patients. For all panels, SARS-CoV-2 virions are depicted as green dots. Black or white arrows show possible directions of viral spread in each organ or tissue.
Viral invasion via the choroid plexus circumventricular organs of the CNS

Viral neuroinvasion via cranial nerves VII, IX, and X to the nucleus of the solitary tract in the brainstem

Viremia, leukocyte infection, and systemic invasion following primary lung infection
Table 1. Summary of current reports on acute taste and smell sequelae of COVID-19.

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Location</th>
<th>Patient Characteristics</th>
<th>Neurologic symptoms</th>
<th>Evaluation</th>
<th>Reference</th>
</tr>
</thead>
</table>
| Multicenter questionnaire | Belgium, France, Spain, Italy | 417 patients, mean age 36.9 yo (range 19-77); Female: 263 (63.1%), Male: 154 (36.9%); all with mild COVID-19 | Anosmia or hyposmia: 85.6% Anosmia or hyposmia: 88.0% | Online questionaire of Olfactory Disorders-Negative Statements | Lechien et al., 2020 Europ. Archives of Otolaryng
g |
| Case report | Aarhus, Denmark | Female patient in “early 30s” with mild COVID-19 | Anosmia and hypogeusia | Anosmia verified with Sniffin’ Sticks extended test (8/48); Hypogeusia verified with taste-spray screening (2/4), taste-drop test (24/40), and taste-strips (12/40). | Haldrup et al., 2020, Ugeskriftet
g |
| Single center, cross-sectional survey | Milan, Italy | 59 patients, median age 60 yo (range 50-74); Female: 29 (32.2%), Male: 30 (67.8%); All were hospitalized with COVID-19 but capable of completing the survey | Sudden onset olfactory or taste disorder in 20 patients (33.9%) | Self-reported | Giacomelli et al., 2020 Clin Inf Dis
g |
| Case series | Padua, Italy | 6 patients, no further descriptions given | Sudden onset hyposmia and hypogeusia as only or main COVID-19 symptom | Self-reported | Marchese-Ragona et al., 2020 medRxiv (note: non-peer reviewed report)
g |
| Case control | Tehran, Iran | 60 hospitalized COVID-19 patients median age 46.55 yo ± 12.17; Female: 40 (67%), Male: 20 (33%); COVID-19 disease: mild (42%), moderate (48%), severe (10%) | Mild microsmia (13%), Moderate microsmia (27%), Severe microsmia (33%), Anosmia (25%) | University of Pennsylvania Smell Identification Test of 40 odorants | Moein et al., 2020 Intl Forum of Allergy and Rhinology
g |
| Retrospective observational | Mulhouse, France | 54 (47%) of 114 examined and/or hospitalized COVID-19 patients with reported anosmia; mean age 47.9 (16y); Female: 36 (67%), Male: 18 (33%) | Anosmia mean duration 8.9 (±6.3) days, Anosmia developed 4.4 (±3.9) days after infection onset Dyguessa in 85% | Self-reported | Klopfenstein et al., 2020 Medecine et Maladies Infectieuses
g |
| Retrospective review | Tehran, Iran | 8 patients with sudden onset anosmia; 5 COVID-19; age range 22-44yo; Female: 6 (75%), Male: 2 (25%) | Anosmia in 8/8 patients onset between 2-4 days after fever Ageusia in 2/8 patients | Self-reported | Gilani, Roditi and Naraghi, 2020, Medical Hypotheses
g |
| Case report | Madrid, Spain | 40yo Venezuelan female, radiologist caring for multiple symptomatic COVID-19 patients | Anosmia 3 days after symptom onset, anosmia resolved after 14 days | Self-reported | Ollarves-Carrero et al., 2020, Travel Medicine and Infectious Disease
g |
| Case series | Washington, DC, USA | 177 pediatric and young adult patients (25% hospitalized, 20% critically ill), Male: 92 (52%), Female: 85 (48%) | Loss of taste and smell in 15 (9%) of patients | Methods not described | DeBaisi et al, 2020, J Pediatr
g |

Abbreviations: COVID-19 - Coronavirus Disease 2019, yo(s) - year(s) old
Table 2. Summary of current reports on acute neurological sequelae of COVID-19.

<table>
<thead>
<tr>
<th>Study Type</th>
<th>Location</th>
<th>Patient Characteristics</th>
<th>Neurologic symptoms</th>
<th>Imaging</th>
<th>Laboratory findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 centers, retrospective</td>
<td>Wuhan, Hubei, China</td>
<td>214 patients, mean age 52.7 yo ± 15.5; Female: 127 (59.3%), Male 87 (40.7%); Severe COVID-19: 88 (41.1%)</td>
<td>Any neurological signs or symptoms: 78 (36.4%); CNS signs or symptoms (dizziness, headache, impaired consciousness, acute cerebrovascular disease, ataxia, and seizure): 53 (24.8%) PNS signs or symptoms (taste impairment, smell impairment, vision impairment, and nerve pain): 19 (8.9%)</td>
<td>None described</td>
<td>Patients with severe symptoms: ↑ CRP, D-dimer ↓ lymphocytes, ↑ BUN/Cr</td>
<td>Mao et al., 2020 JAMA Neurology⁵⁵</td>
</tr>
<tr>
<td>Single center, retrospective</td>
<td>Wuhan, Hubei, China</td>
<td>221 patients, mean age 53.3 yo ± 15.9; Female: 90 (40.7%), Male: 131 (59.3%); Severe COVID-19: 94 (42.5%)</td>
<td>Acute ischemic stroke (AIS): 11 (5%); Central venous sinus thrombosis (CVST): 1 (0.5%) Cerebral hemorrhage (CH): 1 (0.5%)</td>
<td>Representative brain CTs showing new onset AIS, CVST, and left basal ganglia CH</td>
<td>Blood from AIS/CVST/CH patients showed ↑ WBCs, neutrophils CRP, D-dimer ↓ lymphocytes</td>
<td>Li et al., 2020 The Lancet⁵²</td>
</tr>
<tr>
<td>Case report</td>
<td>Shimokato, Chuo, Yamanishi, Japan</td>
<td>24 yo male with headache, fatigue, fever</td>
<td>Altered mental status, seizures, meningitis/encephalitis</td>
<td>Brain MRE DWI showing hyperintensities along right lateral ventricle, FLAIR showing hyperintense signals in mesial temporal lobe and hippocampus, T2WI showing pansellar sinusitis</td>
<td>CSF: ↑ opening pressure, ↑ WBCs, SARS-CoV-2 + by RT-PCR; Blood: ↑ WBCs, ↑ CRP</td>
<td>Moriguchi et al., 2020 Int J of Inf Dis⁶⁶</td>
</tr>
<tr>
<td>Case report</td>
<td>Beijing, Hebei, China</td>
<td>56 yo patient of unknown gender</td>
<td>Viral encephalitis</td>
<td>None</td>
<td>CSF: SARS-CoV-2 + by RT-PCR</td>
<td>Zhou et al., 2020 Travel Med and Inf Dis⁵⁶ (note: non-peer reviewed report)</td>
</tr>
<tr>
<td>Case report</td>
<td>Detroit, Michigan, USA</td>
<td>Female patient, age “in late 50s” with 3 days of cough, fever with COVID-19 in nasal swab</td>
<td>Altered mental status, necrotizing hemorrhagic encephalopathy</td>
<td>Head CT with symmetric hypodensity within bilateral medial thalami with normal CT angiogram and venogram; Brain MRI with hemorrhagic rim enhancing lesions within bilateral thalami, medial temporal lobes, and sub-insular regions</td>
<td>CSF: traumatic puncture, unable to test for SARS-CoV-2 via RT-PCR</td>
<td>Poyiadji et al., 2020 Radiology⁵⁷</td>
</tr>
<tr>
<td>Retrospective case study</td>
<td>Leiden and Rotterdam, The Netherlands</td>
<td>Analysis of 184 COVID-19+ admitted to the ICUs of 3 hospitals for 1 month; 3/184 (1.6%) had strokes, patient characteristics not described</td>
<td>COVID-19 pneumonia requiring ICU admission followed by development of coagulopathy and stroke</td>
<td>Ischemia stroke diagnosed with CT</td>
<td>None described</td>
<td>Klok et al., 2020 Thrombosis Research⁵⁹</td>
</tr>
<tr>
<td>Case series</td>
<td>New York, NY, USA</td>
<td>Five adult patients age 33-49, 1</td>
<td>Two patients were asymptomatic with</td>
<td>CT, CTA, CTP, and/or MRI showed</td>
<td>Blood: ↑ fibrinogen (60%), ↑ D-dimer</td>
<td>Oxley et al., 2020 NEJM⁵⁷</td>
</tr>
</tbody>
</table>

Footnotes:

⁵⁵ Mao et al., 2020 JAMA Neurology
⁵² Li et al., 2020 The Lancet
⁶⁶ Moriguchi et al., 2020 Int J of Inf Dis
⁵⁶ Zhou et al., 2020 Travel Med and Inf Dis (note: non-peer reviewed report)
⁵⁷ Poyiadji et al., 2020 Radiology
⁵⁹ Klok et al., 2020 Thrombosis Research
⁷⁰ Oxley et al., 2020 NEJM
Case report	Barcelona, Catalonia, Spain	50 yo male with severe COVID-19	While in ICU with bilateral pneumonia developed acute onset right facial paralysis and left limb weakness	Head CT perfusion map showed hypoperfusion in left paramedian thalamic artery; Head MRI showed left medial thalamic infarct	None described	Rudilosso et al., 2020 Stroke and Cerebrovasc Dis*
Case report	Wuhan, Hubei, China	69 yo male, 70 yo male, 65 yo female patients with severe COVID-19	Presented with fever, cough, dyspnea, headache and later developed evidence cerebral infarcts; one patient also had distal limb ischemia	Head CT showed diffuse acute cerebral infarctions in cerebral hemispheres in all patients, two patients also had cerebellar infarctions	Blood: ↓ lymphocytes, ↓ platelets, ↑ D-dimer, ↑ fibrinogen; all had positive anticardiolipin IgA and antiβ2-glycoprotein IgA and IgG	Zhang et al., 2020 NEJM*
Case report	Boca Raton, FL, USA	74 yo male patient with severe COVID-19	Fever, cough, headache, altered mental status	Head CT showed evidence of distant posterior cerebral artery stroke; EEG described as consistent with encephalopathy, left temporal lobe dysfunction, and possible epileptogenicity	CSF: no evidence of infection	Filatov et al., 2020 Cureus*
Case report	Rome, Italy	78 yo female patient with mild COVID-19	Focal status epilepticus followed by fever 12 hr later	Head MRI showed no evidence of new cerebral lesions; ictal EEG showed seizure activity localized over left-fronto-centro-temporal regions	Blood: ↓ lymphocytes, ↓ platelets, ↑ CRP	Vollono et al., 2020 Seizure*
Case report	Jingzhou, China	66 yo female patient with moderate COVID-19	Progressive arm and leg weakness with decreased distal sensation – treated with IVIG	Nerve conduction studies supporting demyelinating neuropathy	SARS-CoV-2 in oropharyngeal swab by RT-PCR, lymphocytopenia, thrombocytopenia, normal CSF	Zhao et al., 2020 NEJM*
Case series	Pavia, Italy	5 patients, aged 23–77 yo; Female: 1 (20%), Male: 5 (80%); All had mild COVID-19	Flaccid tetraparesis (60%), flaccid paraparesis (20%), flaccid tetraplegia (10%), facial diplegia (20%), facial weakness (40%), paresthesias (100%) respiratory failure (60%) – treated with IVIG	MRI brain performed in four of patients with one showing facial nerve enhancement in patient with facial diplegia; MRI spine performed in all patients with caudal nerve root enhancement found in one patient	CSF in four patients tested: ↑ protein, SARS-CoV-2 negative by RT-PCR; Negative antiganglioside antibodies in four patients tested	Toscano et al., 2020 The Lancet Neurology*
Case report	Saint-Etienne, France	64 yo male patient with fever and cough for two days, admitted to hospital after rotator cuff injury, found to be SARS-CoV-2 positive on nasal swab	Bilateral upper and lower extremity flaccid severe paresis development beginning 11 days after initial symptom onset, swallowing disturbance – treated with IVIG	None reported	SARS-CoV-2 in oropharyngeal swab by RT-PCR, demyelinating pattern on EMG	Camdessanche et al., 2020 Revue Neurologique*
Case report

54yo Caucasian female patient with no preceding fever or respiratory symptoms but with temporary loss of taste and smell

Progressive proximally pronounced paraparesis, areflexia and sensory loss with tingling of all extremities consistent with an acute demyelinating inflammatory polyneuropathy beginning 10 days prior to admission – treated with IVIG

None reported

SARS-CoV-2 in oropharyngeal swab by RT-PCR. CSF with abuminocytologic dissociation, demyelinating pattern on EMG

Schedl et al., 2020 J. Peripheral Nervous Syst

Abbreviations: AIS - Acute Ischemic Stroke, BUN - Blood Urea Nitrogen, CH - Cerebral Hemorrhage, CNS - Central Nervous System, COVID-19 – Coronavirus Disease 2019, CSF - Cerebrospinal Fluid, Cr - Creatinine, CRP - C-Reactive Protein, CT - Computed Tomography, CVST - Central Venous Sinus Thrombosis, DWI - Diffusion Weighted Imaging, FLAIR - Fluid-Attenuated Inversion Recovery, MRI - Magnetic Resonance Imaging, PNS - Peripheral Nervous System, RT-PCR - Reverse Transcription Polymerase Chain Reaction, SARS-CoV-2 - Severe Acute Respiratory Syndrome Coronavirus 2, T2WI - T2-Weighted Imaging, WBC - White Blood Cell count, yo - year(s) old, EMG - Electromyography
Table 3. Summary of studies on the neurological sequelae of human coronaviruses prior to SARS-CoV-2.

<table>
<thead>
<tr>
<th>HCoV</th>
<th>Study Type</th>
<th>Patient Characteristics</th>
<th>Neurologic symptoms</th>
<th>CNS imaging</th>
<th>Specimen examined</th>
<th>Cells/Tissue CoV</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARS-CoV-1</td>
<td>Case series</td>
<td>Postmortem samples from 4 confirmed SARS patients, 3 males aged 25-57, 1 female age 62</td>
<td>1 patient had headache; no other neurological symptoms described</td>
<td>None described</td>
<td>Cerebrum, cerebellum, pituitary, lung, lymph node, spleen, heart, liver, kidney, adrenal gland, parathyroid gland, bone marrow, skin, esophagus, gastric fundus, small intestine, pancreas, thyroid, aorta, testis, ovary, uterus and striated muscle by IHC and ISH</td>
<td>SARS in neurons of cerebrum by IHC and ISH; pituitary, lung, stomach, small intestine, kidney, adrenal, skin, parathyroid, liver by IHC and ISH</td>
<td>Ding et al., 2003 J Pathol; Ding et al., 2004 J Pathol</td>
</tr>
<tr>
<td>SARS-CoV-1</td>
<td>Case series</td>
<td>Postmortem samples from 8 confirmed SARS patients, no further clinical descriptions provided</td>
<td>None described</td>
<td>None described</td>
<td>Brain by light microscopy, EM, RT-PCR; lungs, trachea, esophagus, small intestines, large intestines, kidneys, stomach, liver, spleen, pancreas, testes, heart, adrenals, thyroid, skeletal muscle by ISH</td>
<td>Virus in neurons of hypothalamus and cortex by light microscopy, EM, and detectable in brain tissue by RT-PCR; lungs, trachea, esophagus, small intestines, large intestines, kidneys by ISH and EM</td>
<td>Gu et al., 2005 J Exp Med</td>
</tr>
<tr>
<td>SARS-CoV-1</td>
<td>Case report</td>
<td>59 yo female, hx of IgA nephropathy with fevers, chills, cough, diarrhea</td>
<td>Vomiting, confusion, seizures, status epilepticus</td>
<td>CT showed no abnormalities</td>
<td>Tracheal aspirate, serum, CSF by RT-PCR</td>
<td>Tracheal aspirate, serum, CSF by RT-PCR</td>
<td>Hung et al., 2003 Clin Chem</td>
</tr>
<tr>
<td>SARS-CoV-1</td>
<td>Case report</td>
<td>32 yo female 26 weeks pregnant with fevers, chills, myalgias, cough</td>
<td>Seizures</td>
<td>MRI showed no abnormalities</td>
<td>CSF by RT-PCR</td>
<td>CSF by RT-PCR</td>
<td>Lau et al., Emerg 2004 Infect Dis</td>
</tr>
<tr>
<td>SARS-CoV-1</td>
<td>Case report</td>
<td>59 yo male with fever and progressive pneumonia</td>
<td>Dysphoria, vomiting, delirium, coma</td>
<td>CT showed broad ischemia, necrosis, edema</td>
<td>Brain tissue with IHC, RT-PCR, viral culture, EM</td>
<td>Virus in glia and neurons by IHC, detectable from brain tissue by RT-PCR, viral culture, EM</td>
<td>Xu et al., 2005 Clin Infect Dis</td>
</tr>
<tr>
<td>HCoV-OC43</td>
<td>Case report</td>
<td>41 mo old male with severe combined immunodeficiency, no prodrome noted</td>
<td>Irritability, sleepiness, feeding problems, abnormal posturing</td>
<td>MRI showed volume loss and abnormal gray matter signal by T2WI</td>
<td>Brain biopsy by RT-PCR and IHC</td>
<td>Brain tissue by RT-PCR, HCoV antigen in neurons and neuropil by IHC</td>
<td>Morfopoulou et al., 2006 N Engl J Med</td>
</tr>
<tr>
<td>HCoV-OC43 and 229E</td>
<td>Case report</td>
<td>3 yo female with URI prodrome</td>
<td>Acute flaccid paralysis following viral URI</td>
<td>None</td>
<td>Nasal swabs, CSF by RT-PCR</td>
<td>Nasal swabs by RT-PCR</td>
<td>Turgay et al., 2015 J Pediatr Neurosci</td>
</tr>
<tr>
<td>HCoV-OC43</td>
<td>Case report</td>
<td>15 yo male with URI prodrome</td>
<td>Acute disseminated encephalomyelitis</td>
<td>MRI showed diffuse white matter lesions brain and spinal cord on T2WI</td>
<td>Nasal swabs, CSF by RT-PCR</td>
<td>Nasal swabs, CSF by RT-PCR</td>
<td>Yeh et al., 2004 Pediatrics</td>
</tr>
<tr>
<td>MERS-CoV</td>
<td>Case series</td>
<td>70 patients with confirmed lab confirmed MERS, 65.7% male, 34.3%</td>
<td>Headache (12.9%), confusion (29.7%)</td>
<td>None</td>
<td>Respiratory swabs by RT-PCR</td>
<td>Respiratory swabs by RT-PCR</td>
<td>Saad et al., 2014 Int J Infect Dis</td>
</tr>
</tbody>
</table>
| MERS-CoV Case series | Case series | 3 adult patients age 45-72 yo all with symptoms of respiratory disease or fever | 1 patient had Ataxia, vomiting, confusion; 1 patient had stroke with hemi-paresis followed by coma; 1 patient had coma, encephalitis | MRI with widespread white matter and subcortical lesions on T2WI in all 3 patients | Tracheal aspirate in 3 patients, CSF in 2 patients by RT-PCR | Tracheal aspirate in 3 patients by RT-PCR | Arabi et al., 2015 Infection

MERS-CoV Case series | 2 patients: 34 yo female with fever and 28 yo male with fever, myalgia, cough, and dizziness | 34 yo F developed headache, nausea, vomiting, and coma 2 weeks following MERS; 28 yo M developed lower limb paraplegia with numbness in stocking distribution | 34 yo F CT showed frontal lobe hemorrhage and edema, 28 yo; 28 yo M had abnormal nerve conduction studies, normal MRI | Both had respiratory swabs RT-PCR, 28 yo male had CSF studies | Respiratory swabs RT-PCR | Algahtani et al., 2016 Case Rep Neurol Med

MERS-CoV Case series | 2 male, 2 female adult patients aged 38-55 yo with symptoms of respiratory disease | 1 patient had hypersomnolence and weakness in all four limbs; 1 patient had tingling in hands and legs, with leg weakness; 1 patient had tingling in both hands and feet; 1 patient had tingling in both hands | None described | Nasal swabs in 3 patients, 1 patient with confirmed exposure | Nasal swabs | Kim et al., 2017 JNC

Abbreviations: SARS - severe acute respiratory syndrome, CoV - Coronavirus, HCoV - Human Coronavirus, MERS - Middle East respiratory syndrome, URI - Upper Respiratory Infection, CT - Computed Tomography, MRI - Magnetic Resonance Imaging, T2WI - T2-Weighted Imaging, IHC - Immunohistochemistry, ISH - In Situ Hybridization, EM - Electron Microscopy, CSF - Cerebrospinal Fluid, RT-PCR - Reverse Transcription Polymerase Chain Reaction
Table 4. A sampling of COVID-19 reporting databases for neurologic conditions and registries outside of neurology.

<table>
<thead>
<tr>
<th>COVID-19 Reporting Databases for Neurologic Conditions</th>
<th>Location</th>
<th>Purpose</th>
<th>Partners/ Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>COViMS (COVID-19 infections in MS & Related Conditions)</td>
<td>North America</td>
<td>Define the impact of COVID-19 on patients with MS and how factors such as age, comorbidities, and MS treatments impact COVID outcomes</td>
<td>National MS Society, Consortium of MS Centers</td>
</tr>
<tr>
<td>COVID-19 Cardiovascular Disease (CVD) Registry (includes stroke)</td>
<td>United States</td>
<td>Aggregate data and aid research on the disease, treatment protocols and risk factors tied to adverse cardiovascular outcomes</td>
<td>American Heart Society</td>
</tr>
<tr>
<td>Acute Encephalopathy in Critically Ill Patients with COVID-19 (NeuroCOVID19)</td>
<td>France</td>
<td>Reporting the prevalence of acute encephalopathy at initial management in Critical/Intensive care or Neurocritical care, to report its morbidity and mortality and to identify prognostic factors</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COVID-19 Registries Outside of Neurology</th>
<th>Location</th>
<th>Purpose</th>
<th>Partners/ Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASH RC COVID-19 Registry for Hematologic Malignancy</td>
<td>United States</td>
<td>Collect and disseminate surveillance data on the natural history of patients with COVID-19 and hematologic malignancies.</td>
<td>ASH Research Collaborative</td>
</tr>
<tr>
<td>COVID-19 Dermatology Registry</td>
<td>International</td>
<td>Understand dermatologic manifestations of the COVID-19 virus</td>
<td>American Academy of Dermatology</td>
</tr>
<tr>
<td>COVID-19 in Pregnancy and Newborns</td>
<td>United States</td>
<td>Understand course of COVID-19 in pregnant women</td>
<td>University of California San Francisco</td>
</tr>
<tr>
<td>ASCO Survey on COVID-19 in Oncology (ASCO) Registry</td>
<td>United States</td>
<td>Collect both baseline and follow-up data on how the virus impacts cancer care and cancer patient outcomes during the COVID-19 pandemic and into 2021</td>
<td></td>
</tr>
<tr>
<td>The COVID-19 Global Rheumatology Alliance Registry</td>
<td>International</td>
<td>Create a secure, de-identified, international case reporting registry for cases of COVID-19 in rheumatology patients, then curate and disseminate the outputs from that registry</td>
<td>The COVID–19 Global Rheumatology Alliance Steering Committee</td>
</tr>
<tr>
<td>COVID-19 Pediatric Observatory (PANDOR)</td>
<td>France</td>
<td>Describe the clinical phenotypes of hospitalized pediatric patients with Covid19 in France, according to age groups</td>
<td>Centre Hospitalier Intercommunal Creteil</td>
</tr>
<tr>
<td>COVID-19 in patients with HIV</td>
<td>United States</td>
<td>Characterize the clinical presentation and disease course of COVID-19 in patients with HIV</td>
<td>University of Missouri-Columbia</td>
</tr>
</tbody>
</table>