Predictive Modeling for Clinical Features Associated with Neurofibromatosis Type 1
Citation Manager Formats
Make Comment
See Comments

Abstract
Objective: Perform a longitudinal analysis of clinical features associated with Neurofibromatosis Type 1 (NF1) based on demographic and clinical characteristics, and to apply a machine learning strategy to determine feasibility of developing exploratory predictive models of optic pathway glioma (OPG) and attention-deficit/hyperactivity disorder (ADHD) in a pediatric NF1 cohort.
Methods: Using NF1 as a model system, we perform retrospective data analyses utilizing a manually-curated NF1 clinical registry and electronic health record (EHR) information, and develop machine-learning models. Data for 798 individuals were available, with 578 comprising the pediatric cohort used for analysis.
Results: Males and females were evenly represented in the cohort. White children were more likely to develop OPG (OR: 2.11, 95%CI: 1.11-4.00, p=0.02) relative to their non-white peers. Median age at diagnosis of OPG was 6.5 years (1.7-17.0), irrespective of sex. Males were more likely than females to have a diagnosis of ADHD (OR: 1.90, 95%CI: 1.33-2.70, p<0.001), and earlier diagnosis in males relative to females was observed. The gradient boosting classification model predicted diagnosis of ADHD with an AUROC of 0.74, and predicted diagnosis of OPG with an AUROC of 0.82.
Conclusions: Using readily available clinical and EHR data, we successfully recapitulated several important and clinically-relevant patterns in NF1 semiology specifically based on demographic and clinical characteristics. Naïve machine learning techniques can be potentially used to develop and validate predictive phenotype complexes applicable to risk stratification and disease management in NF1.
- Received August 6, 2020.
- Accepted February 25, 2021.
- Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
The Nerve!: Rapid online correspondence
REQUIREMENTS
If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Jeffrey Allen and Dr. Nicholas Purcell
► Watch
Related Articles
- No related articles found.